EC MACHINE DIRECTIVE COMPLANCE DECLARATION

(DIREC TIVE 89/392 EEC , APPENDIX II, PARTB)

Manufacturer: FAAC S.p.A.
Address: Via Benini, 1
40069-Zola Predosa
BOLOGNA - ITALY
Hereby declares that the 620, 640, 642 a utomation system

- is intended to be incorporated into machinery, or to be assembled with otherma c hinery to constitute ma chinery in complia nce with the requirements of Directive 89/392 EEC, a nd subsequent a mendments 91/368 EEC, 93/44 EEC and 93/68 EEC;
- complieswith the essential sa fety requirementsin the following EEC Directives:

73/23 EEC and subsequent amendment 93/68 EEC.
89/336 EEC and subsequent a mendments 92/31 EEC a nd 93/68 EEC.
and furthemore declares that unit must not be put into service until the machinery into which it is incorporated or of which it is a component has been identified and declared to be in conformity with the provisions of Directive 89/392 EEC a nd subsequenta mendmentsena cted bythe national implementing legislation.

Bologna, 1 J anuary 1997

IMPORTANTNOTICE FOR THE INSTAUER

GENERALSAFIY REGULATIONS

1) WARNING! FAAC strongly recommends to follow these instructions literally for the safety of persons. Improper installation or misuse of the product will cause very serious damages to persons.
2) Packaging material (plastic, polystyrene etc.) is a potential hazard and must be kept out of reach of children.
3) Read the instructions carefully before installing the product.
4) Keep these instructions for future reference.
5) This product hasbeen designed and manufactured only forthe use stated in thismanual. Any otheruse not expressly set forth will affect the reliability of the product and/or could be source of hazard.
6) FAAC S.p.A. cannot be held responsible forany damage caused by improper use ordifferent from the use for which the automation system is destined to.
7) Do not use this device in areas subject to explosion: the presence of flammable gas or fumes is a serious hazard.
8) Mechanic al constructive elements must comply with UNI8612, CEN pr EN 12604 and CEN pr EN 12605 standards. Countries outside the EC shall follow the regulations above besides their national normative references in order to offer the utmost safety.
9) FAAC cannot be held responsible for failure to observe technic al standards in the construction of gates and doors, or for any deformation of the gates which may occur during use.
10) Installation must comply with UNI8612, CEN pr 12453 and CEN pr EN 12635.

The degree of safety of the automation must be C +E .
11) Before camying out any operations, tum off the system's ma in switch.
12) An omnipowerswitch shall be provided forthe installation with a n opening distance of the contac ts of 3 mm ormore. Altematively, use a 6A thermomagnetic breaker with multi-pole switching.
13) Ensure that there is a differential switch up-line of the electric al system, with a trip threshold of 0.03 A .
14) Check that the earthing plant is in perfect condition and connect it to the metallic parts. Also earth the yellow/green wire of the operator.
15) The automation is fitted with an anti-crush safety system that is a torque control device. In any case, further safety devices shall be installed.
16) The safety devices (e.g. photocells, safety edges, etc.) protect areas wherethere is a mechanical movement hazard, e.g. crushing, entrapment and cutting.
17) Each installation must be fitted with at least one fashing light (e.g. FAAC LAMP, MINILAMP etc) as well as a waming plate suitably fixed to the gate, besides the safety devices as per point 16. above.
18) FAAC cannot be held responsible regarding safety a nd correct functioning of the automation in the event that parts other than FAAC original parts are used.
19) Use only FAAC original spare parts for maintenance operations.
20) Do not cary out any modific ations to a utomation components.
21) The installer must supply all information regarding manual operation of the system in the event of an emergency and provide the end-user with the leaflet attached to the product.
22) Keep out of persons when the product is in operation.
23) Keep out of reach of children the remote radio controls and any control devices. The automation could be operated unintentionally.
24) The end-user must avoid any attempt to repair or adjust the a utomation personally. These operations must be camed out exclusively by qualified personnel.
25) What is not explicitly stated in these instructions is not permitted.

AUIOMATION SYSIEMS 620-640-642 \& 624 MPS

The automation system consists of a white aluminium beam with red reflectors and of a cataphoresis treated steel housing with polyester finish.
The housing contains the operator, which consists of a hydraulic power unit and two pistons. The latter actuate the rotation of the beam by means of a rocker am.
A spring mounted on one of the pistons balances the beam. The housing also contains the electronic control unit, which is fitted in a watertight container.
The system has an adjustable anti-c rushing sa fety system, a device that stops and locks the beam in any position, and a convenient manual release device to be used in the event of a power failure or malfunction.
Automation systems 620, 640 and 642 \& 624 MPS have been designed and manufactured to control the access of vehicles. No other use is allowed.

1. DESCRIPIION AND TECHNICAL CHARAC TERISIICS

Tab. 1 Technic al characteristics of barriers

BARRIER MODEL	$\begin{aligned} & \text { 620/642 } \\ & \text { RAPID } \end{aligned}$		620/642 STANDARD		640/642 STANDARD		
Max. beam length (m)	$\begin{gathered} 2 \\ 2.5 \\ 3 \end{gathered}$	4	$\begin{gathered} \hline 2 \\ 2.5 \\ 3 \end{gathered}$	4	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	6	7
Max. opening time (s) (braking excluded)	<2	$<$	3,5	4,5	4	5,5	8
Angular velocity (r.p.m.)	7.5	5	4.2	3.3	3.7	2.7	1.8
Pump flow rate ($1 / \mathrm{min}$)	2	1.5	1	0.75	2	1.5	1
Max. torque (Nm)	90	110	150	200	$\begin{aligned} & 210 \\ & 250 \end{aligned}$		
Types of beams	Rigid/Skirt/Articulated						
Duty cycle				\%		100\%	
Power supply	$230 \mathrm{~V} \sim(+6-10 \%) 50 \mathrm{~Hz}$						
Absorbed power (W)	220						
Oil type	FAAC XD 220						
Oil quantity (I)	2						
Motor winding thermal cutout	$120^{\circ} \mathrm{C}$						
Anti-crushing system	bypass valves fitted as standard						
Temperature range	-20 to $+55^{\circ} \mathrm{C}$						
Casing protective treatment	cataphoresis						
Casing finish	RAL 2004 polyester						
Housing protection	IP 54						
Weight (kg)	73				84		
Housing dimension W×HxD (mm)	see Figures 4 and 5						
Technical characteristic of electric motor							
Speed (Rpm)	2,800		1,400				
Power (W)	200		200				
Current drawn (A)	1		1.2				
Power supply	230V~ (+6-10 \%) 50 Hz						

1.1. MAXIMUM DUTY CYCLE CURVE

The curve allows the maximum working time (T) to be obtained as a function of duty cycle (F).
E.g.: The 620 rapid, 640,642 R/ 40 a nd 642/70 operatorscan work continuously with a 100% duty cycle, because they are equipped with a cooling fan. The 620 standard and 642 std/ 40 models can work continuously with a 70% duty cycle.
To ensure good operation, keep to the field of operation lying below the curve.

Diagram of duty cycle

Important The curve refers to a temperature of $24^{\circ} \mathrm{C}$. Exposure to direct sunlight can result in a reduction in duty cycle to as low as 20%.

Calculating duty cycle

The duty cycle is the percentage of effective working time (opening + closing) with respect to the total cycle time (opening + closing + pause times).
It is calculated using the following formula:

$$
\% F=\frac{\mathrm{Ta}+\mathrm{Tc}}{\mathrm{Ta}+\mathrm{Tc}+\mathrm{Tp}+\mathrm{Ti}} \times 100
$$

where:
$\mathrm{Ta}=$ opening time
Tc = closing time
Tp = pause time
$\mathrm{Ti}=$ interval between a complete cycle and the next.

2. STANDARD INSTAШATION LAYOUT

Notes:

1) Use suita ble rigid a nd/orflexible c onduitsforinsta llation of the electrical cables.
2) Always route the low voltage accessory connection cablessepa rately from the $230 \mathrm{~V} \sim$ powersupplyc ables. Use separate sheaths to avoid any interference.

3. DIMENSIONS

Values are expressed in mm .
Fig. 4

4. INSTAШATING THE SYSTEM

4.1. PRELMINARY CHECKS

For safe, correct operation of the automation system, make sure that the following requirements are met:

- During its movement the beam does not strike a gainst obstacles or overhead power cables.
- The characteristic sof the ground must ensure sufficient support for the foundation plinth.
- There must be no pipesorelectrical cables in the area to be dug for installing the foundation plinth.
- If the housing is located in a vehicle transit area, it is a good idea to provide protection against accidental collisions.
- Check that the housing is provided with an efficient earth connection.

4.2. INSTA ШNG THE BASE PLATE

1) Assemble the base plate, as shown in Figure. 6.
2) Prepare a foundation plinth asshown in Fig. 7 (for soft ground).
3) Install the base plate as shown in Figure 4, providing one or more conduits for electrical cables.
Use a levelto checkthatthe plate isperfectly horizontal and wait for the cement to set.

4.3. MECHANICALINSTAШATION

1) Fix the housing to the base plate using the four nuts provided, as shown in Figure 8.
The housing should nomally be installed with the door on the premises side.
2) Set up the operatorformanualoperation asdescribed in section 6.

Fig. 6

3) Remove the two breather screws as shown in Figure 9 and keep them in a safe place.
4) Assemble the beam, using the screws supplied, as shown in Figures 10 and 10 b .
Apply the cap to the hole (620 only). The rubberedged side of the beam must be in the closing direction.
5) Adjust the mechanical stops for opening and closing strokes, as shown in Figure 11. Check the beam balancing, as indicated in paragraph 4.4.

Fig. 9

ENGLSH

4.4. ADJ USTING THE BALANCE SPRING

IMPORTANT: The bamier is supplied already balanced for the exact beam length specified in the order (see the Ba mier Order Specific ations, in the price list, a nd TAB. 2-3)

Should a fine adjustment of the beam balance be needed, proceed as follows:

1) Unlock the operator, as indicated in paragraph 6.

TAB. 2

BALANCE SPRING FOR RIGID BEAMS				
BARRIER MODEL	BEAM LENG TH (m)	DIAMEIER OF SPRING WIRE (mm)	SPRING LENGTH (mm)	SPRING CODE
620 STANDARD 620 RAPID	$1.50-2.24$	4.50	400	721085
	$2.25-2.74$	5.50	400	721069
	$2.75-3.24$	6.00	400	721070
	$3.25-4.00$	7.30	400	721072
	$3.75-4.24$	7.00	400	721073
	$4.25-5.24$	8.00	400	721074
	$5.25-6.74$	9.00	400	721075
	$6.75-7.00$	10.50	460	721080

TAB. 3

BALANCE SPRING FOR BEAMS WITH SKIRT				
BARRIER MODEL	BEAM EENG TH (m)	DIAMEIER OF SPRING WIRE (mm)	SPRING LENGTH (mm)	SPRING CODE
620 STANDARD	$2.00-2.99$	5.50	400	721069
	$3.00-3.74$	6.50	400	721071
	$3.75-4.00$	7.00	400	721073
	$3.75-4.74$	8.00	400	721074
	$4.75-5.24$	10.00	460	721079
640 STANDARD	$5.25-5.74$	10.50	460	721080
	$5.75-6.74$	11,00	460	721081
	$6.75-7.00$	12.00	460	721082

2) Adjust the pre-loading ring nut, using the spanner supplied, as shown in Figure 12.
The beam isc orrectly balanced when it remainssteady in the 0° e 90° positions.
If the beam tends to close, tum the ring nut clockwise. If it tends to open, tum the ring nut counterclockwise.

5. START-UP

5.1. CONNEC TING THE ELEC TRONIC UNIT

Important! Disc onnectthe powersupply before you perform any type of operation (connections, programming or maintenance) on the electronic unit
Waming: When terminal strip J 2 is disc onnected, the power supply outputs of the motor, fan and flashing lamp are still connected to electric power.
Follow points 10, 11, 12, 13 and 14 of the G ENERAL SAFETY REGULATIONS.
Position the pipes, as shown in Figure 3, and connect the 624 MPS electronic unit to the accessories.
Keep the power supply cables separate from the control and safety signal ones (photocells, receiver, pushbutton, etc.). To prevent elec tric interference, use separate pipes.

TAB. 4 TEC HNICAL CHARAC TERISTICS OF 624 MPS

POWER SUPPLY	$230 \mathrm{~V}(+6-10 \%) 50 \mathrm{~Hz}$
MAX. MOTOR LOAD	300 W
MAX. ACCESSORY LOAD	500 mA
MAX. WARNING LIG HT POWER	$5 \mathrm{~W}(24 \mathrm{Vac})$
TEMPERATURE RANGE	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$

TAB. 5 OPERATION OF STATUS LEDS

IED	ON (contact closed)	OFF (contactopen)
FCC	closing limit switchnotengaged	closing limit switch engaged
FCA	opening limit switchnotengaged	opening limit switch engaged
OPEN	activated	deactivated
CLOSED/FSW	activated (*)/saf.disengaged $(* *)$	deactivated (*)/saf. engaged (**)
SIOP	deactivated	activated
ALARM	beammoving	beam stationary
WARN. IGHT	see warm. lightoperation	see warn. lightoperation
POWER	motorpoweron	motorpoweroff

(*) Plogic operation
${ }^{(* *)}$ A / Elogic operation

TAB 6 CURRENT DRAWN BY ACCESSORIES

ACCESSORY	NOMINALCONSUMPION
R 31	50 mA
PLUS 433 E	20 mA
MINIDEC SL / DS	6 mA
DEC ODER SL / DS	$20 \mathrm{~mA} / 55 \mathrm{~mA}$
RP 433 ESL / EDS	$12 \mathrm{~mA} / 6 \mathrm{~mA}$
DIG ICARD	15 mA
METALDIG IKEY	15 mA
FOTOSWITC H	90 mA
DETECTOR F4 / PS6	50 mA
MINIBEAM	70 mA

624 MPS C ONTROL UNIT

Fig. 13

T1	TRANSFORMER.
J1	removablelow-voltageterminal STRP
12	REMOVABLEPOWERTERMINALSTRIP
J3	LIMTSWITCHCONNECTOR
J4	DECODERCONNECTOR
J5	CONNECTOR FOR FSW, SLAVE, RELAY
	BOARDS
J6	CONNECTORFORNTC PROBE
J9	REMOVABLE TERMINALSTRIP
	NETWORKPOWERSUPPLY

P1 RESETPUSHBUTION.
F1 F5A FUSE(MOTOR).
F2 T1.6FUSE(ACCESSORRES).
DLI OPEN IMPULSELED (A/E/PLOG.)
D2 CLOSEIMPULSELED (PLOG.) SAFETY CONTACT(A LOG.)
DL3 STOP IMPULSELED
DLA ALARM LED (PANIC)
DL5 OPENNG LMITTSWITCHLED
DL6 CLOSING LMITSWITCHLED

A / E LOGICS CONNECTIONS

P LOGIC CONNECTIONS

DESCRIPIION OF TERMINAL SIRIP

OPEN

This word indicates any activating device with nomally open contact, whose activation causesthe beam to perform an opening movement. In automatic and semi-automatic logics, it controls both opening and closing movements.

CLOSE

This word indicates any activating device with normally open contact, whose activation causes the beam to perform a closing movement. (Present only in P logic).

sTOP

This word indicates a activating device with normally closed contact, whose activation suspends the current status of the beam (opening, pause or closing), until a nother pulse is sent.

SAFITY

This word indicates all devices (photocells, sensitive pneumatic safety edges, magnetic coils) with normally closed contact, which intemupt the movement of the beam whenever there is an obstacle within their range.

PANIC
This word indicates a activating device with normally closed contact, which is activated in an emergency and causes the beam to open, suspending its current status (open) until the RESET pushbutton is pressed.

PROGRAMMING THE MICROSWICHES

NOTE: WHENEVER YOU CHANGE THE MICROSWITCH PROG RAMMING, PRESS THE RESETPUSHBUTTON AFTERWARDS.

(*) IMPORTANT:: The R logic (remote) must be selected only if there are two opposing barriers that work simultaneously. (See pa ragraph "624SLAVECARD", below.)

OPERATION OF SAFETY DEVICES

In the A or E logics, it is possible to obta in two different typesof safety device operation, depending on the pause times that are selected:

- PAUSE TIMES WITH LAMP PRE-FLASHING (10-20-30-40 sec): the closing movement is stopped, then reversed on disengagement.
- PAUSE TIMESWITHOUTLAMP PRE-FLASHING :(0-5-10-20 sec): the closing movement is reversed at once.

ALARM CONDIION

It a rises in the following cases:

1) Enabling of anti-panic input.
2) Activation of safety TME-OUT device, which intemupts the operation of the system when operating time exceeds 30 sec .
3) Simulta neous triggering of the two limit switc hes.
4) Microprocessor reading anomaly (syncro). The alarm condition is indicated by the quick flashing (0.25 sec) of the Wa ming Light LED and of the waming light (if connected).
In this condition, all the functions of the system are disabled. Normal operation is restored only after the cause of the a la m hasbeen eliminated and the RESET pushbutton has been pressed.

OPERATION WTH THE DIFERENTCONTROL LOGICS

TAB. 7 A LOGIC (AUTOMATIC)

impulse beam status	OPEN	STOP	SAFEIY	PANIC
closed	opens, recloses after pause time	no effect	no effect	Beam opens and/ or remains open. Alam condition is activated (see relevant paragraph).
open	recloses at once (*)	stops counting	freezes pause time up to disengagement	
closing	reverses movement	stops	see relevant paragraph	
opening	no effect	stops	no effect	
stopped	recloses at once (*)	no effect	no effect	

(*) If pre-fla shing has been selected, the bamier closes after 5 sec.
TAB. 8 E LOGIC (SEMI-AUTOMATIC)

OPmpulse	OPEN	STOP	SAFETY	PANIC
closed	opens	no effect	no effect	Beam opens and/ or remains open. status
open	recloses (*)	stops	no effect	see relevant paragraph
Alam condition is activated (see relevant paragraph).				
opening	reverses movement	stops	no effect	
stopped	recloses (*)	no effect	no effect	

(*) If pre-fla shing has been selected, the ba mier closes after 5 sec.
TAB. 9 P LOGIC (PARKING: this logic does not allow preflashing)

impulse beam status	OPEN	CLOSED	STOP	PANIC
closed	opens	no effect	no effect	Beam opens and/ or remains open. Alam condition is activated (see relevant paragraph).
open	no effect	recloses	no effect	
closing	reverses movement	no effect	stops movement	
opening	no effect	opens, recloses at once	stops movement	
stopped	opens	recloses	no effect	

TAB. 10 OPERATION OF WARNING UGHT

BEAM STATUS	N.A. CONTACT(*)	N.C. CONTACT(**)
closed	off	on
opening or open	on	off
pre-flashing (if selected) and/or closing	flashing	

(*) Waming light connected between terminals 8 a nd 10. ${ }^{(* *)}$ Wa ming light connected between terminals 9 and 10.

5.2. ADJ USTMENTOF TRANSMITIED TORQUE

Use the two by-passsc rews(fig. 8) to regulate the hydraulic transmitted torque adjustment system.
The red screw adjusts torque during closure.
The green screw adjusts torque during opening.
Tum the screws clockwise to increase torque.
Tum the screws anticlockwise to reduce torque.

5.3. ADJ USTMENTOF STROKE END DECELERATION

1) Position microswitch SW6 a ccording to the a mount of deceleration required:
OFF: SHORT (1.5 sec).
ON: LONG (2.5 sec).
For beams up to 4 m long, a short deceleration is recommended. For beams from 4 to 7 m , a long deceleration is recommended.
2) Adjust the stroke limit cams by loosening the two Allen screws, as shown in Figure 17. To increase the deceleration angle, move the cam toward the limit switch. To decrease the deceleration angle, move the cam away from the limit switch.
3) Re-lock the system (see paragraph 6), and camy out a few test cycles, in order to check whether the positioning of the limit switches, the balancing of the spring, and the transmitted torque are correct.

5.4 TESTING THE AUTOMATION SYSTEM

Once installation is complete, affix the danger waming adhesive on the top of the housing (Fig. 18).
Camy out a thorough functional check of the bamier unit and all ac cessoriesconnec ted to it. Give the page entitled "End-user guide" to the customer and demonstrate how to operate the bamier correctly, drawing the customer's attention to the points of potential danger.

6. MANUAL OPERATION

If the bamier needs to be operated manually asa result of a power failure ormalfunction, use the unlock device as follows.
The key provided can be triangular (standard) or personalised (optional).
(3)
(2)

- Insert the standard key (Figures 19 a) or the personalised key (Figures 19 b) in the lock and tum anticlockwise by one revolution.
- Open or close the barrier manually.

7. REIURNING TO NORMAL OPERATION

To prevent an accidental impulse from activating the ba rier, tum off the system'selectric al powersup ply before retuming to nomaloperation. triangular key (standard):

- tum the key clockwise until it stops, then remove it (Fig. 19a).
personalised key (optional):
- tum the key clockwise until it stops.
- tum the key antic lockwise very slowly to the point where it can be removed (Fig. 19 b).

8. MAINTENANCE

When performing maintenance always check that the bypass sc rews are set correctly, that the system is balanced and that the safety devices operate correctly.

8.1. TOPPING UP WTH OIL

Check periodically the quantity of oil inside the tank. Formedium/low duty cyc lesa yearly check issuffic ient; for more severe operation it is advisable to check every 6 months.
The levelmust notfallbelow the levelmarkonthe inspection window (Fig. 20).
To top up, unsc rew the fillercap (Fig. 20) and pour in oil up to the correct level.
Use exclusively FAAC XD 220 oil.

Fig. 20

8.2. BLEEDING AIR FROM THE HYDRAULC CIRCUIT

If the beam moves in an irregularmanner, this may be due to the presence of air in the hydraulic circuit:

1) Remove the breather screw (Fig. 9).
2) Actuate the beam electric ally:

- while the beam is opening, slightly loosen the bleed screw on the piston with balance spring, then retighten it (Fig. 1, pos. 33);
- while the beam is closing, slightly loosen the bleed screw on the piston without balance spring, then retighten it (Fig. 1, pos. 11).
If necessary, repeat this operation, until you obtain a smooth beam movement.

9. REPAIRS

For repairs, contact an authorised FAAC Service Centre.

10. ACCESSORIES

OPIONALELEC TRONIC BOARDS

The three boards-SLAVE, FSW and RELAY - provide supplementary functions for the 624MPS unit, and may be used simultaneously.
Ca refully read the instructionssupplied with each product.

624 FSWboard (Fig. 21)

The 624 FSW board manages the operation of photocells in P logic (Parking).
To prevent trespassing, the closing safety device causes the beam to stop, then to close again on disengagement.

624 SLAVE BOARD (Fig. 21)

The SLAVE board manages the simultaneous operation of two opposing barriers.
One of the two barmiers is identified as MASTER, the other one as SLAVE.

All the signals sent (open, safety) are controlled by the MASTER bamier, the SLAVE bamier camies out the same movements.

RELAY BOARD (Fig. 22)

The RELAY board providesthe possibility to controlauxiliary servic esthrough contactsthat are a vailable on the terminal strip and are relevant to the various bamier statuses.

Fig. 22

AUIOMATIC EMERG ENCY RELEASE (Fg. 23a)

This device makesit possible, in case of a powerfailure, to ra ise the beam manually without ha ving to ga in access to the unlocking leverof the hydraulic powerunit. A hydraulic system ensures that the beam remains locked in open position.
ANTI-VANDAUSM VALVE (Fg. 23b)
This device safeguardsthe integrity of the hydra ulic system if the beam is broken open.

Fig. 23a

SKIRTKIT(Fig. 24)
The skirt inc reases the visibility of the beam.
It is available in 2 m and 3 m lengths.
IMPORTANT! If the skirt kit is fitted, the balance spring must be adjusted.

ARIICULATION KIT(Fig. 25, mod. 620 only)

The artic ulation kit makes it possible to artic ulate the rig id beam to a maximum ceiling height of 3 m .
IMPORTANT!If the articulation kit is fitted, the balance spring must be adjusted.

END FOOT(Fig. 26)

The end foot supports the beam in closed position and prevents it from bending downwards.
IMPORTANT!f the end foot is installed, the balance spring must be adjusted.

SUPPORTFORK (Fig. 27)

The support fork has two functions:

- it preventsthe beam from bending orbreaking if force is applied to its end;
- it acts as a rest for the closed beam and prevents it from bending downwards.

POSTIONING THE BASE PLATE FOR THE SUPPORTFORK

Figure 28 shows the positioning of the base plate for the support fork.
$\begin{array}{ll}\text { P1 = base plate for barier } & \mathbf{P 2} \text { = base plate for support fork } \\ \mathbf{L}=\text { beam length (in mm }) & \mathbf{A}=\mathrm{L}-425 \mathrm{~mm}(620) \mathrm{L}-450 \mathrm{~mm}(640)\end{array}$

END-USER GUDE

620-640-642 Automation Systems

Read the end userguide carefully before using the product and keep it in a safe place for future reference.

GENERAL SAFITY REGULATIONS

When correctly installed and used, the 620, 640 and 642 automation systems ensure a high degree of safety.
A few simple rulesshould be followed to preventaccidental problems.

- Do not linger under the beam.
- Do not linger near the automation system; do not allow children or adults to linger nearit; and do not leave objects near it.
- Keep wirelesscontrol devices, orotheractivating devices that might accidentally actuate the beam, out of the reach of children.
- Do not allow child ren to play with the automation system.
- Do not impede the movement of the beam.
- Do not allow branches or bushes to interfere with the movement of the beam.
- Ensure that the waming lamps are in always in working order and visible.
- Do not attempt to actuate the beam manually without having first unlocked it.
- In case of a malfunction, unlock the beam to allow vehicles to pass, and call a qualified technician.
- If you have set the manual mode, before restoring normal operation, disc onnect the power supply.
- Do not modify the componentsof the automation system.
- Do not attempt to repair the automation system or to perform any operation on it. Call qualified FAAC technic ia ns only.
- At least once every 6 months, have qualified personnel check that the automation system, safety devic es and earth connection are in working order.

DESCRIPIION

The 620, 640 and 642 automation systems a re id eal ba miers for controlling the access of vehicles to a passageway that isup to 7 m wide and hasa medium-to-high frequency of transit.
The housing conta insthe operator, that consistsof a hydraulic powerunit and two pistons. The latteractuate the rotation of the beam by means of a rocker arm. A spring mounted on one of the pistons balances the beam.
The beam consists of a white painted aluminium bar with red reflectors to ensure good visibility even in the dark.
Bamieroperation is controlled by an electronic control unit mounted in an enclosure which assures adequate protection against atmospheric agents and can be fitted inside the housing.
The normal position of the beam is closed in a horizontal position. When the electronic control unit receives an opening command from the remote radio control or any other control device, it a ctiva tes the hydraulic system and causesthe beam to rotate upwardsby 90° to the vertical position and thereby allow a ccess. If a utomatic operation has been selected, the beam closes a utomatic ally after the selected pause time.
If semiautomatic operation has been selected, a second impulse must be sent to close the beam.
An open command given while the beam is closing causes the beam to reverse direction of movement.

A stop command (if available) stops movement at any time.
Fordeta iled information on ba mieroperation in the va rious operating modes, contact the installation technician.
The bamier units have safety devices (photocells) that prevent the beam from closing when they are darkened by an obstacle. The 630 bamier unit is fitted as standard with an anti-c rushing safety device that limits the torque transmitted to the beam.
The hydraulic system ensures that the beam can be locked in any position.
The beam can then be opened manually only by using the unlocking device.
The light flashes while the beam is moving.

MANUALOPERATION

If the barier hasto be operated manually due to a power failure ormalfunction, use the unlocking device a sfollows. The key provided can be triangular (standard) or personalised (optional).

- Insert the sta ndard key (fig. 1) orthe persona lised key (fig.

2) in the lock and tum anticlockwise by one revolution.

- Open or close the bamier manually.

REIURNING TO NORMALOPERATION

To prevent an accidental impulse from activating the ba mier, tum off the system'selectric al powersupply before retuming to normaloperation.
triangular key (standard):

- tum the key clockwise until it stops, then remove it.
personalised key (optional):
- tum the key clockwise until it stops.
- tum the key antic lockwise very slowly to the point where it can be removed.

